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ABSTRACT

This paper is devoted to tile presentation of tile general framework and tile initial results

of a joint effort to derive novel research tools and easy to use software to analyze and model

turbulence and transition.

After a brief review of the issues and a smnmary of some basic properties of wavelets, we

present our preliminary results. Both tile technical aspects of tile implementation and tile

physical conclusions reached at this time are discussed.

Current developments are summarized in the last section.

1Research was supported in part by the National Aeronautics and Space Administration under NASA
Contract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research (?enter, IIampton, VA 23665
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1. INTRODUCTION

The goal of this work is, through a common effort of people from various fields (Turbulence

theory, Experimental and Numerical simulation, Signal processing, Numerical analysis, Har-

monic analysis), to generate innovative research tools devoted to the analysis, understanding

and modeling of turbulence.

The starting point of this program is the wavdet decomposition and the initial algorithms

derived by some of the authors (Liandrat and Moret-Bailly 1990, Liandrat and Tchamitchian

1990, Moret-Bailly et al. 1991) to study and model turbulence, and more generally, nonlinear

phenomena. Compared with more classical analysis tools, e.g. Fourier Transforms, this new

family of algorithms is very flexible. However, it rapidly became apparent that before these

algorithms become really useful to the fluid dynamics scientific community, they must first

be organized, and translated into an understandable and easily usable form.

In this interim report, we present the first kernel of a program devoted to this task. The

first applications and the ultimate goal of this work are also briefly presented. We wish to

emphasize that the goal of the work is to greatly extend the now classical wavelet decom-

position algorithms. A hierarchy of tools is being developed that will provide quantitative

results together with the basic elements for the modeling of variables within the context of

nonlinear dynamics, transition and turbulence. Currently, several algorithms developed for

the study of boundary-layer transition on a rotating disk have been implemented and are

being tested in other configurations.

Continuous interaction between all the collaborators of this program (i.e. the authors

of this report) should not only bring the already existing algorithms to a level of easy

applicability, but will also provide two additional benefits. First, a subset of these algorithms

will evolve into methodologies which will be directly related to the modeling of the studied

phenomena. An example of this is the relation between wavelet analysis tools and Large

Eddy Simulation. The second benefit of this interaction will be the give birth to a new

generation of algorithms, more powerful than the last.

2. REVIEW OF WAVELET TRANSFORM BASICS AND NOTATIONS

Since the basic motivation of this work is the wavelet decomposition, some basic proper-

ties of one-dimensional wavelets, together with the conventions used in the report are first

reviewed.

A complete review on the current state of wavelet theory is not available, but various

tutorials, book conference or reviews can be found in the literature (Combes et al. 1989,

Rioul and Vetterli 1991, Farge 1992)



From an analysisfunction ¢(x) (Figure 1), the family of functions usedto decomposea

signal u(x) is generated by dilations and translations following the formula:

1 ¢(x - b)

where (a, b) belongs to a 2D continuous or discrete space. (a, b) belongs to R *+ x R in the

so-called continuous case and to a countable subspace in the discrete case. If in addition,

Cab form an orthogonal basis, one has: a = 2j, b = k2 -j with (j, k) C 2g 2 and the dilated

and translated wavelet is denoted Cjk instead of Cab.

One defines the wavelet coefficients (T(b,a)or Tjk)of the function u(x) as:

(2)

or equivalently as:

(3)

6) = f+ff

T(b, a) = fi(w)_:b(w)dw
oo

where u*(x) and _(w) stand respectively for the conjugate and the Fourier transform of the

function u(x).

One recovers the original function u(x) through summation formulas coming from the

identity decomposition (see Combes et al. (1989) for details).

111 the continuous version, one recovers the original function from

(4) u(x)-- 1 +" T(b,a)g'ab(X) a2c(¢)

and its energy (L _ norm) from

(5) ']u['2 = f+__u(x)u*(x)dx = C_)) 9_o+°° /)5 T(b,a)T(b,a)*d_b

where C(¢) is a constant depending only on ¢(x).

For the orthogonal decomposition one gets:

(6) u(x) = __, Tjkg'jk
jk

and

(7) f_u(x)u*(x)dx = _T 2oo jk
jk

The wavelet theory is "constructive" in the sense that the construction of the wavelets

brings along with it the algorithms needed to compute the wavelet coefficients of the decom-

position. Most of these algorithms have an asymptotic operation count at most equal to that
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of the Fast Fourier Transform which is O(N log N). If the wavelet is of compact support,

O(N) algorithms exist. Here, N stands for the number of points in the signal). Details on

the algorithms can be found in the book of Combes et al. (1987) and in the papers of S.

Mal]at (1988) and Perrier and Basdevant (1989).

As stated in the introduction, the wavelet plane (i.e the family of the wavelet coefficients

T_b) is assumed to be the zero level output of the algorithms. This 2D field becomes the

starting point for the first level algorithms.

3. SPECIFIC PROBLEMS OF TURBULENCE AMENABLE TO WAVELET

ANALYSIS

If one had to summarize the initial motivaLion for the use of wavelets in the field of

turbulence, localization and scaling would be two key words for both wavelets and turbulence.

These two properties can be used to good advantage to help decompose turbulence into its

natural scales without loss of spatial information, and also to compress turbulent data by

throwing away information which is not directly relevant to the observed turbulent signals.

But, as stated earlier, the fundamental question addressed here is the following:

What quantitative information can be extracted.from the

wavelet decomposition of a data field?

Within that context, a good choice of the wavelet family is important since the "quanti-

tative information" must refer to the analyzed signal and not to the analyzing wavelet. In

that regard, it is known that localization in both physical and Fourier spaces is necessary.

Numerically, spline wavelets of sufficiently high degree (say m >_ 4) are satisfactory (Liandrat

and Tchamitchian 1990).

After a choice for the family of wavelets is made, we turn our attention to the wavelet

plane. Energetic information (Moret Bailly et al. 1991) is first derived and a new plane

of coefficients is built. This energy plane now forms a new platform upon which second

level algorithms are constructed. Different representations and decompositions of this plane

are then available. Depending on there definitions, they can refer for instance to coherent

structures or optimal decomposition of the signal. These issues are at the cutting edge of

data interpretation in turbulence.

Finally, it appears that a large number of specific problems should be addressed by this

program. Among them are:



, The study of the relations between tile global spectrum (or scale decomposition) and

singularity distributions in a turbulent signal. This problem relates to tile fractal or

multifractal properties of turbulence as well as the notions of complex singularities in

tile theory of partial differential equations (Sulem et al. 1983).

2. The characterization of processes undergoing transition using local scale decomposi-

tions and as a consequence, of the development of models for turbulence.

3. The definition and extraction of typical (coherent) events and the quantification of the

vortex modeling of turbulence.

Answers to these issues would lead to a better understanding of the mechanisms intrinsic

to the dynamics of the flow. This understanding will in turn lead to a new generation of

modeling concepts for the turbulence cascade, and for transition and turbulence in general.

4. ALGORITHMS ALREADY IMPLEMENTED

In this section, tile algorithms that have already been implemented along with some

significant results are presented. One should refer to the quoted papers for more details.

4.1. Basic wavelet decomposition algorithms (Zero Level)

Two kinds of decomposition algorithms have been implemented that provide:

- A decomposition on periodic, even order spline orthogonal wavelets (for N = 2v data

points, a=2-Jand b=k2 -j where0<j_<p-I and0_<k_<2 j-l)

- A decomposition on periodic, even order spline wavelets (for N = 2p data points,

m and 0 < k < N - 1) (see [Perrier and Basdevant 19891)a--_,b=kwherel _<n_< T - -

This last algorithm provides a fully redundant decomposition in the position parameter

b. The ratio of the number of voices per octave can be adapted using available interpolation

routines.

In both algorithms, the scale limits can be arbitrary chosen.

4.2 First Level Algorithms

Starting from the wavelet plane, the energy plane is constructed. Following equation (5),

the energy at the point (b, a) is (Moret-Bailly et al. 1991):

where _(x) is a bump function that represents the envelope of _p(x) and satisfies

4



f X(z)dx=l. This leads to f E(b,a)dadb = ]tull 2.

Using a different normalization at each point, the local energy density probability (also
*J

called scale decomposition) is defined as

(9) Dda) :
]E(b,a)da

4.3 Second Level Algorithms

The analysis of tlle energy plane E(b,a) in terms of the characterization of local or

averaged scale decomposition. Over a subspace ,_qof points, the averaged scale decomposition

is given by

(10) Ds(a) = f (_E(b,a))da

bES

Starting from this scale decomposition, one defines a mean scale as:

(11) G : f log(a)Ds(a)da

where the subscript s referes to a point b or a subset S. Notice that the integration is made

in function of log(a) and not in function of a. Indeed, log(a) is the scare that corresponds

to the dilation factor a.

A normalized standard deviation w is then introduced as:

(12) = -

The mean scale as is the scale around which the active scales gather at point b (or in

the subspace S) while the normalized standard deviation ws quantifies the dispersion of the

active scales around G.

The scale decomposition averaged over the entire energy plane is easily related to the

Fourier energy spectrum thanks to equation (3). A case of special interest for turbulence

occurs when the energy spectrum exhibits a w 2_ behaviour at large frequency. Then, the

averaged scale decomposition behaves as a-_-< (see example 5.2).

The local scale decomposition characterizes the scaling behaviour of a function at a given

point (Tchamitchian and Holschmeider 1989). For a Hglder exponent a at point b the scale

decomposition at the point b behaves as a 2_+1. (see example 5.3).

4.4 Ultimate Level Algorithms

5



Derived for a specific application, these algorithms make the connection with the physical

modeling of the phenomenon under study. The existing algorithms are being applied to the

study of the transition on a rotating disk and to the analysis and characterization of wall

structures. One must refer to Moret-Bailly et al. (1990) for details.

5. FIRST RESULTS

In tile following section the graphical environment of the existing version of the code is

presented along with some illustrations of the algorithm outputs at each level.

5.1 Test case of modulated waves (see Figure 2)

For this test case (Figure 2.a), the local mean scale (Figure 2.b), standard deviation

(Figure 2.c) and local scale decomposition (Figure 2.d) plots are presented. The two flat

zones of the mean scale decomposition represent the local waves, while the local peaks in

the standard deviation reveals the singular regions. The different local scale decompositions

can be used to characterize each part of the signal.

5.2 w 2'_ energy spectrum signal
5

A signal computed from a random phase w-_ energy spectrum has been constructed

and wavelet transformed (Figure 3.a). The averaged scale decomposition (Figure 3.c) is

compared to the Fourier spectrum (Figure 3.b). The local scale decompositions (Figure 3.d)

clearly show that no local scaling occurs in the signal (see Figure 3.a).

5.3 Test case of local singularities

The analyzed signal exhibits a x 2 local behaviour around x = 512 (Figure 4.a). This

local scaling is revealed by the local scale decompositions (Figure 4.b) which gives an a 5

spectrum.

5.4 Rotating disk boundary layer velocity signal

Figures 5 show some results obtained from the analysis of a hot film velocimeter signal

(Figure 5.a) in a transitional boundary layer over a rotating disk. As a first step, the

variations of the standard deviation (Figures 5.b and 5.c) are used to discriminate turbulent

bursts from smoothly oscillating parts of the signal. Then, a full decomposition of the signal

parametrized by the value of the standard deviation is performed.

A comparison of this decomposition at different Reynolds numbers is used to modelize

the transition from an oscillating regime all the way to turbulence (Moret-Bailly et al. 1991).



5.5 Analytical signals to model the compressible boundary layer

A computer code that generates transitional signals has been written for use in connec-

tion with a digital signal processing (DSP) system under development at NASA Langley.

This system will be part of hypersonic flight tests (Bertelrud 1991). The output signal is de-

terministic and has built into it intermittency, simulated anomalies and a variety of periodic

or turbulent quantities undergoing a series of discrete oscillations. The signal chosen for the

current analysis consisted of either

1. A single frequency in the laminar regime (like a wind tunnel fan might yield)

2. A series of frequencies with an amplitude distribution corresponding to the - 1/3 and

-5/3 slopes.

The full signal contains a DC as well as an AC component. However, the DC component

was removed from the signal displayed in Figure 6.a.

The analysis is performed in term of mean scale (Figure 6.b) and standard deviation

(Figure 6.c).

The intermittency function that discriminates the different parts of the signal (6.d) is

obtained from the study of the standard deviation. A comparison between the averaged

scale decompositions in each part of the signal with an adapted windowed Fourier transform

is presented in Figure (6.e). Here, the averaged scale decomposition is plotted versus the

frequency instead of the dilation parameter a (one reminds that the bump shape of the

Fourier transform of a wavelet allows to associate to each value of a a frequency w).

6. TECHNICAL IMPLEMENTATION

6.1 Goals

The technical implementation of the algorithms and the associated graphics should be

clear, interactive, well-suited to incorporate new algorithms, and easily portable across com-

puter platforms. Among the possible solutions to this challenge, three types of interfaces are

under study:

- A full graphic user interface with buttons, sliders, ....

- An interconnected family of modules

-A graphic system governed by a specific command language.

6.2 Existing version

At this time, our prototype has the first type of user interface. Typical screens can be

seen on figure 7 with the different windows standing for the signal representation (1), the



wavelet or energy plane (2), the local or mean scale decomposition (3), the secondlevel

output window (4) and the choiceand control window (5). Although this softwareis already

quite satisfactory,it doesnot satisfy all the previously stated objectives. However,we think
that this version can already help answerbasic questionsand will serveas an elementary

module for the next releaseof the program.

7. FUTURE DEVELOPMENTS AND CONCLUSIONS

Together with the technical implementation, new algorithms havebeenconstructed and

tested. On the onehand, the secondlevelalgorithmsdescribedin this report arebeing refined

by tlle introduction of a better descriptionof the local or averagedscaledecompositions.An

algorithm devoted to the detection and characterization of complex singularities is being

implementedand tested.

Third level algorithms basedon the optimal L 2 decomposition (Karh6nen-Lo6ve decom-

position) of the energy plane are under study in the framework of coherent structures and

transition modeling.

Oil the other hand, among the algorithms already available, the class of ridge and skeleton

algorithms derived by Toressani and Tchamitchian (1991) and the class of fractal character-

ization algorithms developed by Arneodo et al. (1991) should be implemented numerically

in the near future. They clearly have applications (even if it is not yet completely demon-

strated) in the fields of turbulence and transition.
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Figure 7: Screen from graphic user interface.

18





Form Approved

REPORT DOCUMENTATION PAGE oMe _o o7o4-o18e

DaJ_ _.3_r_a, S. !e _2C,: _,,,,r_:c_ , = 2223_-_C; _r= t. t _o _!_ -e._' '_._,t,_e_ _ _=_e_ P_oe,_c._ Re(_u_o_ Pr_ec*. _07£._÷0_85)¢,_,,'_,_g_:o,_ DC 205C]

1. AGENCY USE ONLY (Leave blank) 2. REPO_,T DATE 3. REPORT TYPE AND DATES COVERED

July 1992 ,Contractor R¢po[[
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

DEVELOPMENT OF WAVELET ANALYSIS TOOLS FOR TURBULENCE C NASI-18605

6, AUTHOR(S)

A. Bertelrud, G. Erlebacher, Ph. Dussouillez,

M.P. Liandrat, J. Liandrat, F. Moret Bailly,

Ph. Tchamitchian
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

Ill. SUPPLEMENTARY NOTES

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Interim Report

No. 23

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-189674

ICASE Interim Report
No. 23

Langley Technical Monitor: Michael F. Card

Final Report

12a. DISTRIBUT'ION AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 34

13.' ABSTRACT (Maximum 200 wordsi' '

12b. DISTRIBUTION CODE

This paper is devoted to the presentation of the general framework and the initial

results of a joint effort to derive novel research tools and easy to use software

to analyze and model turbulence and transition.

After a brief review of the issues and a summary of some basic properties of wave-

lets, we present our preliminary results. Both the technical aspects of the imple-

mentation and the physical conclusions reached at this time are discussed.

Current developments are summarized in the last section.
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